Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Clin Med ; 11(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006088

ABSTRACT

BACKGROUND: To investigate whether vaccination against SARS-CoV-2 is associated with the onset of retinal vascular occlusive disease (RVOD). METHODS: In this multicentre study, data from patients with central and branch retinal vein occlusion (CRVO and BRVO), central and branch retinal artery occlusion (CRAO and BRAO), and anterior ischaemic optic neuropathy (AION) were retrospectively collected during a 2-month index period (1 June-31 July 2021) according to a defined protocol. The relation to any previous vaccination was documented for the consecutive case series. Numbers of RVOD and COVID-19 vaccination were investigated in a case-by-case analysis. A case-control study using age- and sex-matched controls from the general population (study participants from the Gutenberg Health Study) and an adjusted conditional logistic regression analysis was conducted. RESULTS: Four hundred and twenty-one subjects presenting during the index period (61 days) were enrolled: one hundred and twenty-one patients with CRVO, seventy-five with BRVO, fifty-six with CRAO, sixty-five with BRAO, and one hundred and four with AION. Three hundred and thirty-two (78.9%) patients had been vaccinated before the onset of RVOD. The vaccines given were BNT162b2/BioNTech/Pfizer (n = 221), followed by ChadOx1/AstraZeneca (n = 57), mRNA-1273/Moderna (n = 21), and Ad26.COV2.S/Johnson & Johnson (n = 11; unknown n = 22). Our case-control analysis integrating population-based data from the GHS yielded no evidence of an increased risk after COVID-19 vaccination (OR = 0.93; 95% CI: 0.60-1.45, p = 0.75) in connection with a vaccination within a 4-week window. CONCLUSIONS: To date, there has been no evidence of any association between SARS-CoV-2 vaccination and a higher RVOD risk.

2.
Mol Med ; 27(1): 120, 2021 09 26.
Article in English | MEDLINE | ID: covidwho-1440900

ABSTRACT

BACKGROUND: Since fall 2019, SARS-CoV-2 spread world-wide, causing a major pandemic with estimated ~ 220 million subjects affected as of September 2021. Severe COVID-19 is associated with multiple organ failure, particularly of lung and kidney, but also grave neuropsychiatric manifestations. Overall mortality reaches > 2%. Vaccine development has thrived in thus far unreached dimensions and will be one prerequisite to terminate the pandemic. Despite intensive research, however, few treatment options for modifying COVID-19 course/outcome have emerged since the pandemic outbreak. Additionally, the substantial threat of serious downstream sequelae, called 'long COVID' and 'neuroCOVID', becomes increasingly evident. Among candidates that were suggested but did not yet receive appropriate funding for clinical trials is recombinant human erythropoietin. Based on accumulating experimental and clinical evidence, erythropoietin is expected to (1) improve respiration/organ function, (2) counteract overshooting inflammation, (3) act sustainably neuroprotective/neuroregenerative. Recent counterintuitive findings of decreased serum erythropoietin levels in severe COVID-19 not only support a relative deficiency of erythropoietin in this condition, which can be therapeutically addressed, but also made us coin the term 'hypoxia paradox'. As we review here, this paradox is likely due to uncoupling of physiological hypoxia signaling circuits, mediated by detrimental gene products of SARS-CoV-2 or unfavorable host responses, including microRNAs or dysfunctional mitochondria. Substitution of erythropoietin might overcome this 'hypoxia paradox' caused by deranged signaling and improve survival/functional status of COVID-19 patients and their long-term outcome. As supporting hints, embedded in this review, we present 4 male patients with severe COVID-19 and unfavorable prognosis, including predicted high lethality, who all profoundly improved upon treatment which included erythropoietin analogues. SHORT CONCLUSION: Substitution of EPO may-among other beneficial EPO effects in severe COVID-19-circumvent downstream consequences of the 'hypoxia paradox'. A double-blind, placebo-controlled, randomized clinical trial for proof-of-concept is warranted.


Subject(s)
COVID-19 Drug Treatment , COVID-19/complications , Erythropoietin/genetics , Hypoxia/drug therapy , Lung/drug effects , COVID-19/genetics , COVID-19/pathology , COVID-19/virology , Erythropoietin/analogs & derivatives , Erythropoietin/therapeutic use , Humans , Hypoxia/genetics , Hypoxia/pathology , Hypoxia/virology , Lung/pathology , Lung/virology , Pandemics , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use , SARS-CoV-2/drug effects , Post-Acute COVID-19 Syndrome
5.
J Clin Med ; 10(14)2021 Jul 09.
Article in English | MEDLINE | ID: covidwho-1308366

ABSTRACT

In COVID-19, guidelines recommend a urinalysis on hospital admission as SARS-CoV-2 renal tropism, post-mortem, was associated with disease severity and mortality. Following the hypothesis from our pilot study, we now validate an algorithm harnessing urinalysis to predict the outcome and the need for ICU resources on admission to hospital. Patients were screened for urinalysis, serum albumin (SA) and antithrombin III activity (AT-III) obtained prospectively on admission. The risk for an unfavorable course was categorized as (1) "low", (2) "intermediate" or (3) "high", depending on (1) normal urinalysis, (2) abnormal urinalysis with SA ≥ 2 g/dL and AT-III ≥ 70%, or (3) abnormal urinalysis with SA or AT-III abnormality. Time to ICU admission or death served as the primary endpoint. Among 223 screened patients, 145 were eligible for enrollment, 43 falling into the low, 84 intermediate, and 18 into high-risk categories. An abnormal urinalysis significantly elevated the risk for ICU admission or death (63.7% vs. 27.9%; HR 2.6; 95%-CI 1.4 to 4.9; p = 0.0020) and was 100% in the high-risk group. Having an abnormal urinalysis was associated with mortality, a need for mechanical ventilation, extra-corporeal membrane oxygenation or renal replacement therapy. In conclusion, our data confirm that COVID-19-associated urine abnormalities on admission predict disease aggravation and the need for ICU (ClinicalTrials.gov number NCT04347824).

6.
Nephrologe ; 16(1): 26-32, 2021.
Article in German | MEDLINE | ID: covidwho-986660

ABSTRACT

The aim of this article is to explain the clinical benefits of the growing knowledge about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to the lungs, SARS-CoV­2 can invade multiple cell types in other organs, such as the kidneys and replicate there. Important damaging pathways of the virus, such as vascular endotheliitis, thrombotic events and systemic cytokine release are still incompletely understood. Coronavirus disease 2019 (COVID-19) is a systemic disease that necessitates intensive medical care and in particular, internal medicine involvement and represents a major challenge for all disciplines of internal medicine. Among these, nephrology in particular is involved in the fight against COVID-19 in a variety of ways: urine investigations can provide indications of multiple organ involvement, endotheliitis, microthrombi and microcirculation damage, etc. Experience with low serum albumin levels and antithrombin III activity in nephrotic patients helps to point out the decreasing effects of loop diuretics and heparin to other specialist disciplines. Nephrological knowledge of the complications of hypoalbuminemia and "resistance" to diuretics must lead to an early implementation of renal replacement procedures in order to be able to prevent mechanical ventilation in COVID-19 intensive care patients with increased extracellular lung fluid. The kidneys can be used as a seismograph for severe courses of COVID-19 and nephrological knowledge can be brought to use to optimize the intensive medical care for critically ill patients. Both together have the potential to considerably reduce morbidity and mortality further.

8.
SELECTION OF CITATIONS
SEARCH DETAIL